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Optimal rotational spacing was obtained for n=  2 to 12 orientations of an object in three-dimensional 
space. For n=2, 3, and 4 the minimum spacing, z(min), was 180 °, with rotation space not being com- 
pletely filled. For n= 5 and 6 all spacings are equal to 151.05 and 141.06 ° respectively. The n=  7 case has 
two spacings at 134.04 and 180 °. The n=8 case has two spacings at 130.18 and 153-56 °. The n= 10 case 
has three spacings at 128.53, 141.05 and 164.8 °. The n= 12 case has two spacings at 120 and 180 °. The 
best arrangement found for n= 9 and 11 was to remove one grid point from n= 10 and 12 respectively. 
The coordination about each point and the orientations of the grid difference rotation axes are given. 
The axes for n = 5 are directed toward the vertices of a regular dodecahedron; the axes for n=  12 are 
directed toward the vertices and faces of a cube. Products of two rotations of equal magnitude to give a 
third rotation of the same magnitude were considered and classified into conrotatory and disrotatory 
types. For n > 12 the Lattman treatment was extended to include third-order terms. Examples of Latt- 
manian angle grids are given and the grid spacings are compared to theoretical estimates. 

Introduction 

Optimal  rotational spacing as used here means an ar- 
rangement  of  n orientations of  an object such that the 
magni tude of  the least angle between orientations is 
maximum.  The n orientations will be referred to as a 
rotational grid, and the angles between orientations 
will be referred to as intergrid angles. If  some of the 
intergrid angles about a grid point are equal, they 
comprise a rotational coordination shell, in analogy with 
the usual concept of  the distance coordinat ion shell. 
The total number  of  rotational intergrid angles is 
n(n-1)/2; these can be thought of  as filling the upper 
tr iangular part  of  a square matrix, excluding the diag- 
onal elements. 

Op t imum rotational spacing, besides its purely 
mathematical  interest, is of  interest in connection with 
various practical rotational problems. If  the initial 
orientation of  an object is random, the choice of an 
optimally spaced rotational grid in rotation space will 
make it likely that at least one grid point is close to 
the starting orientation. 

In the study of  the structure of  crystals containing 
rigid molecules a calculated Patterson function may be 
superposed for best fit onto the observed Patterson 
function, or some variation of  this procedure may be 
used. Here the best orientation is unknown,  and each 
optimized rotational-grid point provides a trial model 
to test or improve the fit. This subject has been dis- 
cussed by Lat tman (1972) and he gives references to 
recent work in this area. 

* Supported by research grant GM16260 from the U.S. 
Public Health Service. 
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Minimizat ion of the lattice energy of  a crystal con- 
taining rigid molecules (molecular-packing analysis) is 
another  example where optimal rotational spacing is 
of  interest. The opt imum rotational grid provides trial 
models on the energy surface such that at least one of  
them is likely to be sufficiently near the global min- 
imum so as to avoid falling into a subsidiary or false 
m i n i m u m  in the lattice energy. This subject has been 
discussed by Will iams (1972) and he gives references to 
recent work in this area. 

An alternative approach is to use the Monte-Carlo 
method (Andr6, Fourme & Renaud,  1972) to generate 
trial rotational-grid points. 

There are, of  course, no rotations in one-dimensional  
space. In two-dimensional  space the matrix represen- 
tation of  n optimally spaced rotational-grid points may 
be generated from the identity matrix by ( n - 1 )  rota- 
tions through the angle 2n/n. These contacts may be 
arranged into different spacings. For n even the most 
distant spacing is at 180 ° and has coordination number  
1. There are n /2 -1  nearer spacings each with coordi- 
nat ion number  2. For n odd there are ( n -  1)/2 spacings, 
each of  coordinat ion number  2; no spacing occurs at 
180 ° . 

Product of two equal rotations in three dimensions 

We consider here the matrix representation of the pro- 
duct of  two successive rotations of  equal angle, Z, about  
different axes. Let the first rotation be R,(z,a)  and the 
second be Rb(z,b), where the Rt are or thonormal  ma- 
trices representing a counterclockwise rotation through 
angle 2' about  axis i, a unit vector. In terms of  the 
components  of  a, 

ala2(1-cos z ) - a a  sin Z a l a3 (1 -cos  z)+a2 sin ~] ] 

cos Z + a2(1 - c o s  X) a2a3(1 - c o s  2 ' ) -  al sin . 

a2aa(1 - c o s  Z) +aa sin Z cos y+a2(1  - c o s  Z) 
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Fig. 1. Axial inclination, 0, versus rotation angle, X, for the 
conrotatory and disrotatory combinations of three equal- 
angle rotations (o). 
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Fig. 2. The conrotatory and disrotatory axis directions are 
shown stereographically for several values of Z(°). The 
directions of rotation are indicated. 

The rotational origin may be selected by taking a 
along the z axis and requiring b to lie in the x z  plane. 
Let us further restrict ourselves to rotation products 
also having the amplitude fX 1. This case is of interest in 
connection with equally spaced rotation grids. The 
product rotation, R~, is then equal to RbR, and must 
have a trace equal to 1 +2  cos IX[. If tr (RbR,) is ex- 
panded in components and set equal to tr (R~), we ob- 
tain the equation 

(1 - cos x ) 2 b J -  (2 sin z x)b3-- sin 2 X = O. 

The solutions are 

b3 = [sin X / ( 1 - c o s  X)z]{sin X + [2(1-cos Z)]I/z}. 

The solutions depend on 0, the angle between vector 
b and the z axis, where, of course, cos 0 = b3. The direc- 
tion of rotation of Rc has been lost but will be re- 
covered later. Since we have chosen b in the xz  plane 
b l = ( 1 - b Z 3 )  1/2 and bz=O. Fig. 1 gives a plot of the two 
solutions. For the disrotatory solution 0 is in the range 
90 _< 0 _< 180 °. 

For purpose of drawing stereograms it is convenient 
to have the b axis in the upper hemisphere. Thus, if 
0>90 ° we consider the reverse axis - b  which has a 
clockwise rotation direction. The angle between - b  
and z is, of course, 180 ° -  0. 

The direction of rotation for Rc may be recovered 
by evaluating its elements and comparing them to the 
elements of the product matrix RbRa. The solution we 
call conrotatory corresponds to the rotation directions 
R~(-X,c)=R~(x,b)R,(j(,z), where b is directed toward 
the upper hemisphere. The solution we will call disro- 
tatory corresponds to the rotation directions Rc(X, c)= 
RJ-X,-b)Ra(X,Z) ,  where - b  is now directed toward 
the upper hemisphere. The axial directions are shown 
stereographically in Fig. 2. 

The conrotatory case is easily understood by refer- 
ring to Fig. 2. When 0 = 0  ° the solution is R b = R , =  
R(120°,z); obviously Re=R(-120° ,z ) .  As 0 increases 
from zero the three axes separate symmetrically so that 
all interaxial angles are acute and equal to 0. For the 
inclined axes Z gradually increases from 120 to 180°; 
at X = 180 °, 0 = 90 ° and the axial symmetry is 222. No 
solution exists for the conrotatory case when X < 120°. 

The disrotatory case can be followed starting from 
Z= 180 °. Here the two cases are equal since positive 
and negative rotations of 180 ° about the same axis are 
identical. Axis - b  is shown in the stereograms. As X 
decreases from 180 °, - b  moves upward toward the z 
axis in the x z  plane. The product axis, e, moves into 
the x f z  octant. The angles between a and - b ,  and a 
and c, are acute and equal to 180 ° -  0. The angle be- 
tween - b and e is obtuse and equal to 0. As X decreases 
toward zero, 0 approaches the limiting value of 120 ° 
and c approaches the x z  plane inclined at 60 ° to z. This 
limit of b3 = - ½ as X ---> 0 can be verified by a series ex- 
pansion of the equation for b3. When X = 0 all three 
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axes are indeterminate, of course, since no rotations 
are involved. 

Using these results, it will be possible in the following 
section to describe triads of equal-angle rotations in 
terms of conrotatory or disrotatory relationships. 

Optimal spacing of  n rotational-grid points 
in three dimensions 

n = 2, 3 and 4 
For n = 4 the rotation space is not completely filled. 

By this it is meant that additional orientational free- 
dom exists after fixing the rotational origin. This is 
obviously true for n = 2, since the direction of the single 
rotation axis relating the grid points is completely ar- 
bitrary. This direction is significant, however, for a 
general asymmetric object. 

We will describe the solution for n = 4; the n = 3 solu- 
tion may be obtained by deleting one orientation from 
n = 4 .  Fig. 3 shows the optimum selection of the grid 
points. All intergrid angles are 180 °. The first orienta- 
tion is just the identity matrix, represented by the Car- 
tesian axes (xxylzl). The second orientation of axes, 
(xzy2z2), is obtained by a 180 ° rotation about the z axis. 
The third orientation, shown in the right side of the 
figure, is obtained by a 180 ° rotation about the x axis. 
The fourth orientation is then obtained from the third 
by a 180 ° rotation about the z axis again. 

It is seen that all intergrid angles are indeed 180 ° so 
that the arrangement is optimum. Note, however, that 
the two axial orientations in the right side of the figure 
may be rotated an arbitrary amount about the z axis 
without changing any of the intergrid angles. This is 
the additional degree of freedom that was referred to 
above. 

o r  

X2 

D j k R j  = R k ,  

D~k = Rk Rt • 

The difference matrices, Djk, include the grid points 
themselves, since one of the Rj is the identity matrix. 
All of the difference matrices correspond to rotations 
of X = 151"05° about axes directed toward the vertices 
of a regular dodecahedron. The dodecahedron, of 
course, includes the tetrahedron as a subfigure. 

The vertex identification of the intergrid matrices is 
shown in Table 1. The Table is antisymmetric in the 
sense that the direction of rotation is reversed in the 
lower left portion of the table. Alternatively, the axial 
directions could be reversed, setting R] = R11, and so 
forth. 

Table 1. Axial  identOqcation o f  intergrid difference 
matrices, Djk, .for n = 5 

I RI R3 R12 R14 
I I RI R3 R12 R14 
R1 R[ I R9 R5 R7 
R3 R t3 R[ I R8 Rl5 
R12 R~2 R~ R[ I R10 
R14 R~4 R7 Ris Rio I 

The products Rk=DjkRj are all conrotatory as de- 
signated in the previous section. In Fig. 2 the axis of 
Rj corresponds to a, the axis of Djk corresponds to b, 
and the axis of Rk corresponds to - c .  For Z = 151.05 ° 
axes a and b subtend an angle of 70.5 °, a and - c  sub- 
tend an angle of 109.5 °, and b and - c  subtend an angle 
of 109.5 ° also. Thus it can be seen from Fig. 4 how 
Table 2 is made up from conrotatory product rotations. 
There is no mixing of rotation directions, and there is 
an enantiomorphous set of grid points with reversed 
rotation directions. 

n = 6  

A computer program was written to find the op- 
timum orientation of n rotational grid points. This 
program found the minimum of the function 

F =  ~ Ixjkl-' 
where Zjk was found from the difference matrices, D~k, 
which in turn were found from the set of n matrices 

Y, Y4 

Z2 

6 5 

Xl X4 
-Z4 

X3 
--Z 5 

"(2 Y3 

Fig. 3. An orientat ion of four Cartesian-coordinate systems 
such that all rotat ion angles are 180 ° . 

n = 5  
The four nonorigin rotation-grid points may be 

selected as rotations of Z=  151.05 ° (cos Z = -~-) about 
tetrahedral axes. If the vertex numbering scheme 
shown in Fig. 4 is used, the matrices are I, Rx, R3, Rl2, 
and R14. The intergrid spacings are obtained by setting 

Fig. 4. A number ing  system for the vertices of a regular 
dodecahedron.  Add  10 to get the vertex number  of the 
vertices related by the center of symmetry.  
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I, R~, i=  1,2, . . . ,  ( n - 1 ) .  The starting model was the 
optimum grid in two dimensions. The exponent, r, was 
initially set at 12 and then increased to a large value, 
at least 200, as the refinement progressed. As r becomes 
large, minimization of F is equivalent to maximizing 
the least intergrid angle. 

Each matrix R~ is orthonormal and is specified by 
three parameters, so that the minimization problem 
involved 3 ( n - 1 )  variables. A grid-search technique in 
the parameter space was used to locate the minimum. 
In general, smooth convergence was obtained to the 
results reported here; an exception was the case of 
n=9 ,  where a false minimum was encountered (see 
below). 

For n = 6 it was found possible to make all intergrid 
angles equal, with Ix I-- 141.06 °. The axial arrangement 
is shown in Fig. 5. The symmetry of the axes of the 
difference matrices is 4/mmm. Both conrotatory and 
disrotatory products are utilized; the figure indicates 
the intergrid axes by type (C or D), as well as the gen- 
erating grid points. 

One grid axis may be taken along z, and the other 
four have fourfold symmetry about z, inclined at 60 ° 
to the z axis. A mirror-related difference axis appears 
such that, for example, the projected angle onto the xy 
plane of grid axis 2 and conrotatory difference axis 
C46 is 19.5 °. Thus, the projected angle between grid 
axis 2 and difference axis C36 is tetrahedral. The other 
four difference axes are disrotatory and also show 
fourfold symmetry about z; they are inclined at 45 ° to 
the z axis. The overall difference-axis orientation pat- 
tern may be described as a set of Cartesian axes and 
sets of axis triplets oriented about the [111] directions. 

n = 7  
This case presents the first appearance of different 

rotational spacings in three dimensions. Of the 21 
intergrid angles, 18 are at 134.04 ° and 3 are at 180 °. 
Fig. 6 shows the location of the grid and difference 
axes. The symmetry of the axes is 222. 

There are two types of grid axes: Rz, Ra, and R 4 a r e  

in the xy, yz, and xz planes, subtending an angle of 

Table 2. Rotation angles and axial directions for optimally spaced rotational grids & three dimensions 
The first grid p o i n t i s  always taken as an identi ty matrix,  x=0 .57735 .  

n Z(°) al az aa 0+ 0z 0_ 
5 151-05 x x x 228"18 104-48 90"00 

151-05 x - x  - x  131"82 104"48 270"00 
151-05 - x  - x  x 588"18 104"48 90"00 
151"05 - x  x - x  491"82 104"48 270"00 

6 141"06 0"85355 --0"14645 0"50000 610"53 109"47 340"53 
141"06 -0"85355 0"14645 0"50000 250"53 109"47 340"53 
141"06 0"14645 0"85355 0"50000 250"53 109"47 160"53 
141"06 -0"14645 0"85355 0"50000 250"53 109"47 199"47 
141"06 0"0 0"0 - 1 " 0  - -  180"00 218"94 

7 134"04 0"95590 0"29371 0"0 360"00 134"04 34-16 
134-04 0"0 0"95590 0"29371 290"59 123"29 180-00 
134"04 0"29371 0"0 0"95590 227"85 211-37 0"0 
134"04 -0"42407 -0"80021 0"42407 630"00 112"97 124-16 
134"04 0-42407 -0"42407 -0"80021 124"16 247"03 270.00 
134"04 -0"80021 0-42407 -0-42407 450"00 112-97 304-16 

8 153"56 0"95050 0-31073 0"0 360-00 153-56 36-21 
153"56 0"0 -0"95050 -0"31073 105-82 135"43 180"00 
153"56 -0-31073 0"0 0"95050 567-77 215"21 0"0 
130-18 x - x  x 617"62 95"55 270"00 
130-18 -0"80690 x 0"12483 329"91 128"28 288"83 
130"18 - x  -0"12483 -0"80690 120-16 244"79 24"40 
130-18 0"12483 0"80690 - x  462"38 95"55 162"41 

10 141-05 0-0 -0-70711 - 0-70711 126-86 263-62 180-00 
141-05 -0-70711 0"0 0"70711 593-14 263"62 0"0 
141-05 0"70711 0"70711 0"0 360"00 141"05 90"00 
128-53 0"90449 -0"42226 -0"05990 14-17 128"11 309"95 
128"53 -0"42226 0"90449 0"05990 345"83 128"11 230"05 
128-53 0"42226 0"05990 0"90449 236"11 225"19 16"15 
128-53 -0"90449 -0"05990 -0"42226 82"44 109"48 7"58 
128"53 -0"05990 -0"90449 0"42226 637"56 109"48 172"42 
128"53 0"05990 0"42226 -0"90449 483-89 225"19 163"85 

12 180"00 1 "0 0"0 0"0 - -  180'00 0"0 
180"00 0"0 1"0 0"0 - -  180"00 180.00 
180"00 0.0 0.0 1"0 180"00 0.0 - -  
120-00 x x x 270-00 90-00 90-00 
120.00 - x  - x  - x  90-00 90"00 90-00 
120"00 - x  x x 270.00 90.00 270-00 
120"00 x - -x  - -x  90"00 90-00 270"00 
120"00 - -x  - -x  x 630"00 90"00 90"00 
120"00 x x - -x  450"00 90"00 90"00 
120"00 x - -x  x 630"00 90-00 270"00 
120-00 - -x  x - -x  450"00 90"00 270"00 

A C 29A - 7 



17.08 ° with the x, y, and z axes respectively. Difference 
matrices formed from disrotatory products D34 , D24 , 
and D23 a re  located symmetrically about the Cartesian 
axes. 

Grid matrices Rs, R6, and R7 a re  parts of  square 
arrays centered on the Cartesian axes such that the 
projected angle is 36.85 ° . The other vertices of the 
squares are formed by difference axes resulting from 
conrotatory products involving two different types of 
grid axes. The three remaining axes are in the Cartesian 
directions. They correspond to the difference matrices 
within the set Rs, R6, and R7. These difference-matrix 
axes are called mixed since the rotation angles are dif- 
ferent. 

n = 8  

Fig. 5. Axial stereogram for ! l=6.  In Figs. 5-8 the letters, 
C, D, and M indicate conrotatory, disrotatory, or mixed- 
type difference axes respectively. A negative sign means the 
grid axis is directed downward.  

The 28 intergrid contacts are separated into two 
spacings. The first spacing has 22 contacts at 130.18°; 
the second spacing has six contacts at 153.56 °. Fig. 7 
shows the grid points and the intergrid axes. The first 
spacing has an interpenetrating block-type arrange- 
ment, with addit ional  line figures across the axes. The 
second spacing has three addit ional line figures formed 
by rotating the first spacing-line figures by 90 ° . Both 
conrotatory and disrotatory equal-product rotations 
are used as indicated in the Figure, as well as the 
mixed-product  rotations. The symmetry of  the axes is 
222. 

n = 10 (and n = 9) 

For  n = 10 the 45 contacts are arranged in three spac- 
ings. The first spacing has 36 contacts at 128.53°; the 
second spacing has 6 contacts at 141.05°; and the last 
spacing has three contacts at 164.8 ° . The grid points 
and intergrid-axis orientations are shown in Fig. 8. 
The triply degenerate spacing at 164.8 ° has axes which 
are coincident with the Cartesian axes. The three pairs 
of  axes in the spacing at 141-05 ° are arranged to bisect 
each pair of  Cartesian axes. 

The nearest-neighbor contacts are arranged in four 
triplets centered about the [111] directions, and six 
quartets symmetrically disposed about  the xy,  xz ,  and 
y z  planes. The intergrid axial symmetry is 432. Note 
that points - 5 and 6 are below and above the x y  plane, 
and the similarly disposed M axes are out of  the xy 
plane. 

The triplets result from equal-product conrotatory 
or disrotatory axis combinat ions  are indicated in the 
Figure. The six quartets arise f rom mixed-product  ro- 
tations. 

The computer  calculation for n = 9 obtained a false 
m i n i m u m  with a smaller x(min) than that obtained for 
n = 1 0 .  

The best solution found for n = 9  was simply to 
remove one grid point  f rom the n = 10 case. 

n = 12 (and n = 11) 

The case of  n =  12 is especially straightforward. The 
66 intergrid contacts are arranged in two spacings. 

The nearest-neighbor spacing has 48 contacts at 120°; 
the second spacing has 18 contacts at 180 ° . The 120 ° 
grid axes, as well as all of  the 120 ° intergrid axes, are 
arranged in the eight [111] directions. The three 180 ° 
grid axes, as well as all of  the 180 ° intergrid axes, are in 
the three Cartesian directions. The difference matrices 
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2 

M67 

Fig. 6. Axial stereogram for n = 7. 

C24 

D78fl [ ~ 
C57 

D67 -5  C58 

Fig. 7. Ax ia l  stereogram for n =  8. "]'he open triangles indicate 
the second rotational coordination sphere. 
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are formed from conrotatory products, with both  di- 
rections of  rotation being present simultaneously.  

The best solution found for the n=11  case was 
simply to remove one point  f rom the n-- 12 case. 

Table 2 lists for reference the opt imum grid data for 
n = 5 ,  6, 7, 8, 10, and 12. 

M 5 . 1 0  

Fig. 8. Axial stereogram for n=10. The open triangles and 
squares indicate the second and third rotational coordina- 
tion spheres. 
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Fig. 9. Lattmanian angle plot of the optimum rotation grid 
for n=12. Elevations in 02 are given beside each point. 
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Fig. 10. The minimum intergrid angle, x(min), as a function 
of n -113. The solid line represents the values x(min)= 
245.80 n -1/3. The points for n< 12 are optimum: the points 
for larger n are taken from Table 4. 

Coordination shells for n <_ 12 
The rotational  contacts about  a given grid point  may 

be characterized into coordinat ion shells. Since rota- 
tion space is closed (as contrasted with translation space), 
the m a x i m u m  possible intergrid angle is 180 °. Table 3 
lists the rotational coordinat ion shells for the op t imum 
grid systems with n < 12. The points are arranged into 
equivalent  coordinat ion types (no more than two types 
are needed in this range of  n), with multiplici ty 
g=(c~=a,b). Each coordinat ion type has coordinat ion 
shells (no more than two shells are needed for this 
range of  n) with individual  multiplicities h=i(i= 1,2). 

Table 3. Coordination-shell data for optimum 
rotational grid points, n < 12 (angles in degrees) 

First shell Second shell 
n ~ g= h=l IxI he2 ixI 
2 a 2 1 1g0 
3 a 3 2 180 
4 a 4 3 180 
5 a 5 4 151-05 
6 a 6 5 141"06 
7 a 4 4 134-04 

b 3 4 134-04 2 180 
8 a 4 7 130"18 

b 4 4 130"18 3 153"56 
10 a 6 8 128-53 1 164"86 

b 4 6 128-53 3 141-05 
12 a 12 8 120 3 180 

An example of  the interpretation of  Table 3 is as 
follows. For  n =  10 there are 4 grid points of  type b. 
Each of  these points is surrounded by a coordinat ion 
sphere of  6 points at 128.53 ° and another  coordinat ion 
sphere of  3 points at 141.05 °. 

Lattmanian angle grids 

The case of large n has been treated recently by Latt- 
m a n  (1972). The op t imum arrangement  of  the rota- 
tional-grid points may be described by La t tman ' s  
angles, 0+, 02, and 0_, which are defined in terms of  
the usual  Eulerian angles 01, 02, and 03: 

O+ =01+Oa 0 < 0 +  <4zc 
0 2  = 0 2  0 _ ~ 0  2 _~ 7/7 

0_ = 0 ~ -  03 0 < 0 _  <2re.  

The ranges of  the Lat tmanian  angles are shown, except 
that  when 02=0 the range for 0+ is reduced to 0 < 0 +  
< 2re. Op t imum sampling of  rotation space is obtained 
by taking equal intervals in AO+ cos (02/2), A02, and 
AO_ sin (02/2). 

We have verified Lat tman 's  t reatment and have ex- 
tended the series expansion to include fourth-order 
terms. While the fourth-order terms enter the difference 
angle expression in a complicated way, the third-order 
terms are quite simple and may easily be included to 
yield the following third-order approximat ion:  

2 2 /101 _t_/10 2 sin 2 (02/2) ,7. a = dO+ cos 2 (02/2) -b 

+ (A02/2) cos (02/2) sin (02/2) (AO 2_ - A O  2 ) .  

A C 2 9 A  - 7* 
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Table  4. Sample data for Lattmanian grids with 3, 4, 5, 6, 7 and 9 sections in 0 2 (o) 

Number of Theoretical Observed Number of Section 
points x(min) z(min) sections number 02 AO+ AO_ 

26 82.97 82.82 3 1 0 90 - 
2 90 120 120 
3 180 - 90 

72 59.08 57.9l 4 1 0 60 - 
2 60 72 120 
3 120 120 72 
4 180 - 60 

184 43.22 41"53 5 1 0 45 - 
2 45 45 120 
3 90 60 60 
4 135 120 45 
5 180 - 45 

284 37.89 34.22 6 1 0 36 - 
2 36 36 120 
3 72 45 60 
4 108 60 45 
5 144 120 36 
6 180 - 36 

536 30"26 28"97 7 1 0 30 - 
2 30 30 120 
3 60 36 60 
4 90 45 45 
5 120 60 36 
6 150 120 30 
7 180 - 30 

1280 22.78 20-78 9 1 0 22"5 - 
2 22"5 22"5 120 
3 45 22-5 60 
4 67"5 30 45 
5 90 30 30 
6 112.5 45 30 
7 135 60 22"5 
8 157"5 120 22"5 
9 180 - 22"5 

Thus,  the th i rd-order  terms vanish  when AO+ = AO_, 
as would  be the o p t i m u m  case when 02=90  ° . When  
02-¢ 90 °, general ly the o p t i m u m  AO+ would  be different 
f rom the o p t i m u m  AO_ and  the th i rd-order  terms 
would  require  tak ing  the equal  intervals,  

A0+ (COS (02/2)[COS (02/2)-(302/2) sin (02/2)]} 1/2 

and  

AO_ {sin (02/2)[sin (02/2) + (A02/2) cos (02/2)]}1/2. 

Examples of  Lattmanian angle grids 
Fig. 9 shows the case o f  n =  12 p lo t ted  as a funct ion  

of  the L a t t m a n i a n  angles. There  are three sections in 
02, wi th  A02 = 90 °. Eight  grid points  are on the section 
02=90  ° wi th  AO+=AO_=180 °. These poin ts  are 
staggered with respect to the pairs o f  points  at 02 = 0 ° 
and  02 = 180 °. No te  tha t  at 02 = 0 °, 0_ is indeterminate ,  
and  at  02= 180 °, 0+ is indeterminate .  

Sample  da ta  for  La t tman i an  angle grids with 3, 4, 5, 
6, 7, and  9 sections in 02 are given in Table  4. No  stag- 
gering o f  the sections was a t tempted ,  but  the closest- 
t o - o p t i m u m  spacing of  integral  numbers  of  grid points  
was selected for each section. All intergr id angles were 
found  and  the closest contacts  were determined.  The  de- 
gree of  op t imiza t ion  may  be es t imated by compar ing  
this m i n i m u m  angle with a theoret ical  value ob ta ined  

by dividing the tota l  vo lume of  L a t t m a n i a n  angle space 
into n cubes of  volume 2,(rain) 3. Thus,  to the second- 
order  approx ima t ion ,  

nz(min) 3= cos (02/2) sin (02/2)d0_ dO2dO+ = 87t 2 
0 0 

or z ( m i n ) = 2 4 5 . 8 0  n -~1/3~ in degrees. Note  tha t  this 
theoret ical  value is not  op t imum,  even for large n, 
since no staggering of  the points  is considered (com- 
pare  hexagonal  closest pack ing  or face-centered cubic 
closest pack ing  o f  points  in t rans la t ion  space). How-  
ever, this procedure  is ana logous  to the f requent ly  used 
simple-cubic grids in t rans la t ion  space. 

Table  4 shows that  the sample grids approach  fairly 
closely these theoret ical  values for  z(min).  Fig. 10 
shows a plot  o f  x(min)  rersus n -~l;a) for all grids con- 
sidered in this paper.  The opt imized values in the range 
4_< n < 12 are always better  than  the above  theoret ical  
estimate.  For  n > 12 the values for  2'.(min) are reason-  
ably close to, but  always less than,  these theoret ical  
values. 
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